If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+x^2-14x+3=0
a = 1; b = -14; c = +3;
Δ = b2-4ac
Δ = -142-4·1·3
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{46}}{2*1}=\frac{14-2\sqrt{46}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{46}}{2*1}=\frac{14+2\sqrt{46}}{2} $
| x=9*3 | | 4x2+8x-9=0 | | A^3+5=A/316a^2 | | 3x/10=7x/8 | | 3x/10=7x/8-23 | | x^2=653^2 | | 11m-2=30 | | 2/5(7/8-4x)-7/8=1/8 | | -16=3y+3 | | (x+x)=4-6x | | -.5n-9=-.5n+.75 | | 3-11/n=-10/n^2 | | 2160=(24000)0.03t | | (x*8.25)+x=369 | | 15r2=3r | | x/4+x/7=11 | | 10d/4-8;d=6 | | 2(x+3)=5(x=1)-4 | | -3=½(n-6) | | 6x-(2x+11)=13 | | 2(x+3)+5=3x-4 | | 7x=(3x+7)=1 | | -9/4x=-7 | | 6k2-23k-4=0 | | 165=10(x-60)+65 | | 71=7d+7 | | 2(8x+7)-8(-4-3x)=42+41x | | 1/5x+5/9=3-4/5x+3 | | -5a+4+6a=13-26 | | m-28=-29 | | y/5+5/9=y/9-4/9 | | 4.9y^2+60=0 |